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Abstract

It has recently been shown how to break SO(10) down to the Standard Model in

a realistic way with only one adjoint Higgs. The expectation value of this adjoint

must point in the B � L direction. This has consequences for the possible form of the

quark and lepton mass matrices. These consequences are explored in this paper, and

it is found that one is naturally led to consider a particular form for the masses of

the heavier generations. This form implies typically that there should be large (nearly

maximal) mixing of the � and � neutrinos. An explanation that does not involve large

tan� also emerges for the fact that b and � are light compared to the top quark.
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1 Introduction

For a number of reasons, SO(10) is widely considered to be the most attractive grand

uni�ed group. It achieves complete quark-lepton uni�cation for each family; explains the

existence of right-handed neutrinos and of \seesaw" neutrino masses; has certain advantages

for baryogenesis, in particular, since B � L is broken [1]; and has the greatest promise

for explaining the pattern of quark and lepton masses [2] - [6]. Some progress has been

made in constructing SO(10) models in superstring theory, it now being known that there

are perturbative ground states of the heterotic string with three generations of quarks and

leptons [7].

It has been shown that there are limitations in the context of perturbative superstring

theory on supersymmetric grand uni�ed models which have more than a single adjoint Higgs

�eld. In particular, it had been argued that if there are multiple adjoints in realistic models

they must have the same charges under local symmetries. (They may have di�erent discrete

gauge charges, however.) This makes it signi�cantly harder to construct realistic models

in which there are several adjoints which couple in di�erent ways [8]. On the other hand,

until recently, it was not known how to break SO(10) without either using three adjoint

Higgs �elds [9] or having colored pseudo-goldstone �elds that largely vitiated the uni�cation

of gauge couplings [10, 11]. However, in a recent paper [12], a satisfactory mechanism was

proposed for achieving natural breaking of SO(10) without more than one adjoint Higgs

�eld. But in that paper only the Higgs sector was considered. This raises the question of

whether quarks and leptons can be incorporated in a satisfactory way into models which

employ that mechanism of symmetry breaking.

There are two aspects to this question. First, it is not obvious whether a single adjoint

Higgs is su�cient to give a realistic pattern of quark and lepton masses. If there is only
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one adjoint Higgs �eld in SO(10), its vacuum expectation value must point in the B � L

direction in order to produce the doublet-triplet splitting [13]. This greatly constrains the

possibilities for the quark and lepton masses, as this adjoint VEV is the only one that breaks

the SU(5) subgroup of SO(10) at the uni�cation scale, and therefore the only one that can

break the \bad" SU(5) relations such as m0
� = m0

s. (The superscript `0' refers throughout to

parameters at the uni�cation scale.) All models in the literature which attempt to explain

the pattern of fermion masses in the context of SO(10) make use of adjoint VEVs that point

in directions other than B � L [2] - [6].

The second issue has to do with the stability of the gauge hierarchy. In SO(10), as in any

uni�ed model, there are higher-dimension operators that would destabilize the hierarchy, and

which must therefore be forbidden by some local symmetry or other principle. These local

symmetries constrain the possible couplings of the Higgs �elds and therefore the possible

Yukawa couplings of the quarks and leptons. Conversely, the existence of realistic quark and

lepton Yukawa interactions may be incompatible with any symmetry that could stabilize the

hierarchy, and may therefore imply the presence (because of Planck-scale e�ects) of operators

that destroy the hierarchy.

In this paper we show that a realistic pattern of quark and lepton masses can be achieved

in a natural way using only one adjoint Higgs and the mechanism for symmetry-breaking

proposed in [12]. We �nd, indeed, that the possibilities are tightly constrained, and under

certain reasonable requirements the basic structure that we �nd may be unique. This struc-

ture is fairly simple: it does not require that there be any Higgs �elds or any symmetries

beyond those introduced in [12] to achieve SO(10) breaking to SU(3)�SU(2)�U(1). It also
provides an explanation of many of the qualitative and quantitative features of the quark

and lepton masses and mixings.
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There are two interesting features of the structure to which we are led. First, it typically

gives large, and indeed nearly maximal, mixing of �� with �� . This is possibly of great signi�-

cance in light of the evidence of such mixing coming from atmospheric neutrino observations.

Second, an interesting explanation emerges of the smallness of mb and m� compared to mt

that does not involve large tan�.

2 Review of the Breaking of SO(10)

Before turning to the problem of quark and lepton masses, let us briey review the

mechanism proposed in [12] for breaking SO(10) with only a single adjoint. The Higgs

superpotential has the form

W = T1AT2 +MTT
2
2 +WA +WC +WCA +WTC ; (1)

where T1 and T2 are 10's and A is a 45. WA is a set of terms that produces the \Dimopoulos-

Wilczek" form for the expectation value of A: hAi = diag(0; 0; a; a; a) � i�2, where a �MG.

This is equivalent to saying that the VEV of A is proportional to the generator B�L. This

form for hAi couples the color-triplets in T1 amd T2, but not the weak-doublets. The e�ect

of the �rst two terms in Eq. 1 is to give superheavy masses to all the color triplets in Ti but

leave the pair of weak-doublets in T1 light. The simplest form for WA that works is

WA = trA4=M +MAtrA
2: (2)

Here and in the following, all explicit denominator masses are regarded as Plank scale masses,

i.e., MP .

To break SO(10) completely to the Standard Model requires also Higgs in the spinor

representation which must get vacuum expectation values in the SU(5)-singlet direction. If
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C and C are respectively a 16 and 16, then a simple form for WC is

WC = X(CC)2=M2
C + f(X); (3)

where X is a singlet �eld, and f(X) is a polynomial in X that has at least a linear term.

Then the f-at condition FX = 0 forces C and C to get VEVs.

The terms WCA couple the spinor sector (C, C) to the adjoint sector (A). This is

necessary [12] to prevent light, color-singlet pseudo-goldstone �elds from being produced by

breaking of the uni�ed symmetry. The only mechanism known to do this without involving

several adjoint �elds was proposed in [12]. The form of WCA given there is

WCA = C
0
(PA=M1 + Z1)C +C(PA=M2 + Z2)C

0: (4)

Here C 0 and C
0
are an additional 16 + 16 pair, and P , Z1 and Z2 are singlets. C

0 and C
0

have vanishing VEVs, which ensures that WCA does not destabilize the hierarchy (i.e. the

Dimopoulos-Wilczek form of hAi) by contributing to FA. The FC0 = 0 and F
C

0 = 0 equations

lead to the conditions (PA=M1 + Z1)C = C(PA=M2 + Z2) = 0 having a discrete number

of solutions, for one of which hCi and hCi point in the SU(5)-singlet direction. These two

equations then �x the relative magnitudes of the VEVs of the singlets P and Zi. There is

one linear combination of these singlets that is not �xed by the terms in Eq. 1, but this can

be �xed by radiative e�ects after supersymmetry breaks [12].

Finally, the WTC term which was not included in [12] is added here in order to induce

an electroweak-breaking VEV in the spinor C 0. This VEV will help to generate the desired

texture in the fermion mass matrices. For this purpose we set

WTC = �T1CC (5)

where � is a dimensionless coe�cient which, as we shall see later, must be somewhat smaller
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than one | about 1=20. From the F �
C
= 0 equation, which gives

0 = 2�T1C + (PA=M2 + Z2)C
0: (6)

it then follows that since C, P , A, and Zi all have superlarge VEVs in the SU(5) 1 direction,

while the Higgs doublets of T1 are assumed to develop weak-scale VEV's in the SU(5) 5 and

5 directions, the SU(2)L-doublet in C
0 must also develop a weak-scale VEV in the SU(5) 5

direction.

This set of terms gives a complete breaking of SO(10) down to the Standard Model

group without �ne-tuning of parameters and without pseudo-goldstone �elds. The mass MT

appearing in Eq. (1) must arise from the expectation value of some �eld or product of �elds.

Two viable possibilities are P 2 and Zi.

The stability of the hierarchy requires that certain types of higher-dimension terms not

arise, in particular terms that give e�ectively T 2
1 , CAC, CCA

2=M , or Zn
i . The �rst of

these, T 2
1 , would directly give superheavy mass to the doublet Higgs �elds. Both CAC

and CCA2=M would destabilize the Dimopoulos-Wilczek form of hAi; hence the choice of

a higher order term in the WC superpotential of (3). The appearance of Zn
i would cause a

conict between the FZi
= 0 equations and the FC0 = 0 and F

C
0 = 0 equations. In [12] it

was shown that a simple U(1) � Z2 � Z2 symmetry is su�cient to rule out all dangerous

operators. In order to obtain the desired appearance of the �T1CC term in WTC along with

the rest of the Higgs superpotential, the U(1)� Z2 � Z2 charges are reassigned as follows:

A(0+�); T1(1
++); T2(�1+�)

C(1
2

�+
); C(�1

2

++
); C 0([1

2
� p]

++
); C

0
([�1

2
� p]

�+
)

X(0++); P (p+�); Z1(p
++); Z2(p

++)

(7)
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3 B - L Generator and Fermion Mass Matrix Textures

We have succeeded in constructing a simple superpotential for the quark and lepton

�elds that gives the fermions realistic masses and makes use of no Higgs super�elds beyond

the set found necessary to achieve a satisfactory breaking of SO(10) in [12], namely Ti, A,

C, C, C 0, C
0
, and the singlets X; P; Z1 and Z2. To help understand this superpotential

before writing it down, we explain the kind of textures that are needed if only one adjoint is

available with its VEV in the B � L direction. The desired textures for the mass matrices

U , D, and L are of the form

U �=
2
4
0 0 0
0 0 F=3
0 �F=3 E

3
5 vu; (8)

D �=
2
4
0 0 G0

0 0 F=3 +G
0 �F=3 E

3
5 vd; (9)

and

L �=
2
4

0 0 0
0 0 �F
G0 F +G E

3
5 vd: (10)

These matrices are written so that the left-handed antifermions multiply them from the left

and the left-handed fermions from the right. We imagine that some of the zero entries in the

�rst row and column actually get small contributions from higher order terms so that the

�rst generation will not remain exactly massless. This will be discussed later. Note that the

parameter F is multiplied by a factor of B � L everywhere. Suppose that we assume that

G � E � F . Denote the small parameter F=E by the symbol �, and the O(1) parameter
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p
G2 +G02=E by �. Then it is easy to see that the following relations hold:

m0
c=m

0
t
�= �2=9;

m0
s=m

0
b
�= ��=3(1 + �2) � �=3;

m0
�=m

0
�
�= ��=(1 + �2) � �;

m0
�
�= m0

b ; m0
�=m

0
s
�= 3;

Vcb �= ��2=3(1 + �2) � �=3:

(11)

Thus the following facts would be explained: the equality at the GUT scale of the b and

� masses, the Georgi-Jarlskog factor of 3 between the � and s masses at the GUT scale [14],

why Vcb is of order ms=mb, why mc=mt is much smaller than both ms=mb and m�=m� , and

why the second generation masses are small compared to the third, and the �rst generation

masses are very small compared to the second. This list contains most of the salient features

of the quark and lepton spectrum. It is important to note how some of these relations are

achieved, and therefore the rationale for the form of the textures.

In our model the only generator of SO(10) available for constructing the textures is B�L.
As we shall see, it is a simpler matter for this generator to appear in the o�-diagonal entries

than in the diagonal ones. However, if the 23 and 32 entries are just proportional to B � L,

while the 33 entries are proportional to the identity, then the ratio (m�=m� )=(ms=mb) is

9 instead of the Georgi-Jarlskog value of 3. It is therefore essential to have asymmetrical

entries like those denoted by G and G0. With G or G0 being much larger than F and not

depending on B � L, the desired ratio of 3 for m0
�=m

0
s is obtained. As we will see, such

asymmetrical entries can be achieved simply by integrating out SO(10) 10's of fermions,

since these contain SU(5) 5+5 (which contain dcL and lL) but not SU(5) 10 (which contain

dL and lcL). Moreover, entries produced in this way will appear only in the down quark

and charged lepton mass matrices, D and L; but not in the up quark and Dirac neutrino

mass matrices, U or N . (This follows from the fact that they come from e�ective operators
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of the form 161616H16H , where 16H contains the 5 but not the 5 of SU(5).) This then

automatically explains why the ratio mc=mt is much smaller than the ms=mb and m�=m�

ratios. The fact that the entries G and G0 appear in D but not in U also explains why Vcb

does not vanish. (Of course, Vcb = 0 is a minimal SO(10) relation.)

4 Important Conclusion about Neutrino Mixing

Careful consideration of those possibilities available that use only the generator B � L

leads to the conclusion that the textures given above are likely to be the only ones that satisfy

the requirements of simplicity and realism. Other structures tend to be more complicated,

or require arti�cial numerical relationships among parameters to reproduce the qualitative

and quantitative features of the spectrum of quarks and leptons.

These textures already have an interesting phenomenological consequence, namely, that

they predict large mixing of �� and �� . The neutrino mixing angles arise from the mismatch

between the unitary transformations required to diagonalize the charged leptom mass matrix,

L, and the neutrino mass matrix, M� . The neutrino mass matrix can be written in the

familiar seesaw form: M� = �NTM�1
R N , where MR is the superheavy Majorana mass

matrix of the right-handed neutrinos, and N is the Dirac mass matrix for the neutrinos.

Little can be said at present about the form of MR as there are many possible ways that the

right-handed neutrinos can get mass. However, the form of N is closely connected to the

forms of U , D, and L. In fact, given the forms shown in Eqs. (8) - (10), one expects N to

have the form

N =

0
@

0 0 0
0 0 �F
0 F E

1
A : (12)

Precisely this form will indeed arise from the superpotential that we shall discuss in the

next section. The similarity of structure of N and U is a typical feature of SU(5) and
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SO(10) models. The di�erence in the coe�cient of the F term is, of course, just due to the

generator B � L. The G and G0 terms are absent from N just as they are from U for the

reasons explained above.

One sees immediately that the 13 and 23 angles required to diagonalize M� vanish in

the limit that the second generation masses go to zero (i.e. F=E � � �! 0) and the

�rst generation masses go to zero, no matter what the form of MR. Nevertheless, it is

possible that the texture of MR is such that these angles are numerically large in spite of

being formally of order �. However, we will assume that MR does not have such a special

form, and therefore that one can neglect these angles. With this plausible assumption, the

mixing angle between �� and �� can be read o� directly from the matrix L. It is given by

tan ��� �=
p
G2 +G02=E = �. One then �nds that

tan ��� �= � � 3V 0
cb=(m

0
�=m

0
� ) �= 1:8: (13)

It is quite striking that the constraint of having SU(5) broken only by an adjoint pointing in

the B �L direction, which is in essence a minimality condition on the Higgs sector, leads in

a natural way to textures for the quark and lepton mass matrices that predict large mixing

of the � and � neutrinos. The consequences of this implication for neutrino mixing will be

explored more fully elsewhere.[15]

5 Yukawa Superpotential Yielding the Desired Textures

We will now show how these textures arise in a straightforward way from a few terms

in the superpotential. We distinguish the third generation quarks and leptons, which we

denote 163, from the other two generations, which we denote 16i, i = 1; 2. In addition, we

posit the existence of some \vectorlike" sets of quarks and leptons to be \integrated out",
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namely 16+ 16, 10 and 100. The proposed Yukawa superpotential has the following form:

WY ukawa = 163163T1

+ 1616P + 16316A+ ai16i16T1

+ 10100CC=MP + ci16i10C + 16310
0C 0:

(14)

As in the Higgs superpotential, we have suppressed most of the dimensionless coe�cients,

which are assumed to be of order unity. However, we have explicitly written the two Yukawa

coe�cients that carry the family index i, which, of course, is summed over. Recall that the

Higgs �elds T1 and C 0 each develop weak-scale VEV's, while A; C; C; P; Z1 and Z2 all

acquire superlarge VEVs. No VEV's appear for C 0 or X.

The 33 elements denoted by E in the U; D and L matrices of (8) - (10) obviously arise

directly from the �rst term in Eq. (14) as illustrated in Fig. 1(a). The F contributions to

the matrix elements arise from the next three terms in Eq. (14), which contain the spinors

16 and 16. This is easiest to see diagrammatically by considering Fig. 1(b). By integrating

out those spinors one e�ectively obtains a term of the form ai16i163hAihT1i=MG. Because

the vacuum expectation value of A is proportional to B � L, this term will have a factor

of B � L of the �eld contained in 163 (or, equivalently, �(B � L) of the �eld contained in

16i). Without loss of generality, one can take the Yukawa coe�cient ai to point in the 2

direction. Thus one has F [(B � L)ff
c
2f3 + (B � L)fcf

c
3f2]hT1i, where F is a dimensionless

combination of VEVs and Yukawa couplings. This form also explains why it is hard for the

generator B � L to appear in a diagonal element of the mass matrices, for the combination

[(B � L)f + (B � L)fc]f
c
i fi vanishes for the diagonal ii matrix element.

The G and G0 contributions to the mass matrices in (8) - (10) arise from the last three

terms in Eq. (14), which contain the vector �elds 10 and 100 as can be seen diagrammatically

from Fig. 1(c). Having de�ned the 2 direction to be that of ai, there is no freedom left,

and ci will have components in both the 1 and 2 directions. Since as noted earlier, the
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VEV's of C and C 0 point respectively in the 1 and 5 SU(5) directions, it is clear that only

the 5(16i)5(10)h1(C)i and 10(163)5(10
0)h5(C 0)i components of the last two terms in the

superpotential of (14) can contribute to the mass diagram in Fig. 1(c). (Here and throughout

p(q) denotes an SU(5) p contained in an SO(10) q.) Hence with the convention that the

mass matrices are to be multiplied from the left by left-handed antifermions and from the

right by left-handed fermions, the diagram depicted in Fig. 1(c) can only contribute to the

13 and 23 elements of the down quark mass matrix D and the 31 and 32 elements of the

charged lepton mass matrix L. The up quark mass matrix U and the Dirac neutrino mass

matrix N receive no such contributions.

One can also easily see the origin of the G and G0 terms directly from the superpotential

terms in Eq. (14). The 5(10) has a mass term with the linear combination of super�elds

hCC=MP i5(100) + cihCi5(16i). But this linear combination lies nearly exactly in the ci16i

direction, because of the M�1
P Planck scale suppression factor. Thus 5(100) is almost purely

one of the light (i.e. weak-scale) multiplets, and in generation space points partly in the 1

and partly in the 2 directions. It then follows directly that the term 16310
0C 0 gives the G

and G0 entries. Note that direct calculation of the mass matrix elements shows these entries

are not suppressed by powers of MP as one might naively think from Fig. 1(c).

Before turning to the question of how the small �rst generation masses arise, we note that

the terms in the Yukawa superpotential of 13 do not destabilize the gauge hierarchy. With

the assignments given in (7) for the Higgs multiplets, the charges of the chiral multiplets are

completely determined by the terms appearing in (14):

163(�1

2

++
); 16i([�1

2
+ p]

++
); i = 1; 2

16(�1

2

++
); 16(1

2

++
)

10(�p�+); 100(p++)

(15)

The value of the charge p depends on which �eld or �elds couple to T 2
2 . Two viable choices
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are p = 1 or p = 2, giving respectively that the mass term for T2 is of the form T 2
2P

2=MP

or T 2
2Zi. It is easily checked that the U(1) � Z2 � Z2 forbids any destabilizing terms, such

as those containing factors of T 2
1 , CAC, and Zn

i as discussed in the pure Higgs �eld case.

There are some higher-dimension terms not included in Eq. (14) that are allowed by the

symmetry, such as 102P 2=MP , but these prove to be harmless.

The requirement of stability of the gauge hierarchy does dictate an important feature

of the structure of the Yukawa superpotential in (14), namely that C 0 acquires a weak-

scale 5(16) SU(2)L � U(1)Y -breaking VEV, and that C 0 and T1 therefore mix. One might

imagine that the G and G0 terms in the matrices of (8) - (10) could be generated without

a spinor Higgs �eld acquiring an SU(2)L � U(1)Y -breaking VEV. This could happen via

the diagram in Fig. 2, if instead of the terms in Eq. (14) there were the following terms:

163163T1+1616P +ai16i16A+16316T1+1010S+ci16i10C+1610C. However, it is easy

to see that the existence of the terms 1010S, 16i10C, 1610C, 16i16A, and X(CC)2=M2
P

would imply that the term CACS=MP is allowed by the symmetry; this term would destroy

the gauge hierarchy and such a form for the Yukawa superpotential is unacceptable for the

doublet-triplet splitting solution.

Thus it seems that generating simple and realistic textures for the quark and lepton

mass matrices requires that C 0 break the electroweak symmetry and mix with T1. This is

an important fact, for it may also hold the key to explaining why t is much heavier than b

and � , which is otherwise somewhat mysterious in the context of SO(10). This point can be

seen from Eq. (6), which says that the linear combination of 5(T1) cos �+ 5(C 0) sin �, where

tan � = h(PA=M2 +Z2)i=(2�)hCi, has a vanishing VEV. In fact, from the term jFC j2 in the

scalar potential, it is clear that this linear combination is superheavy. The orthogonal linear
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combination is the �eld H 0 of the MSSM, while H has the usual de�nition:

H 0 = 5(C 0) cos � � 5(T1) sin �
H = 5(T1):

(16)

Therefore the ratio of the b to t masses is determined by the angle �, in particular:

m0
b=m

0
t = m0

�=m
0
t = sin �(hH 0i=hHi) = sin �= tan�: (17)

But from the fact that hP i � hAi � hCi � MG, while hZii � M2
G=MP , one �nds tan � �

��1MG=MP . Therefore, the smallness of the mass ratios in Eq. (17) may be due to small

sin � rather than large tan�. The authors of [16] pursued a similar attempt to lower tan�

by reducing the ratio of the bottom to top Yukawa couplings in SO(10) models. Here

with � � 1=20 the correct mass ratios are obtained with tan� � 1. This would alleviate

the problem of Higgsino-mediated proton-decay, the amplitude for which is proportional to

tan� for the large tan� case. To suppress Higgsino-mediated proton decay then requires

that MT (see Eq. 1) be made small compared to MG. This, however, tends to increase �s.

Thus, the problems of SO(10) are alleviated if tan� is small.

So far we have not speci�ed how the quarks and leptons of the �rst generation get masses.

There are a number of possibilities, all of which require integrating out additional vectorlike

quark/lepton representations to get e�ective higher-dimensional Yukawa operators. One

such e�ective operator is

W 0 = 16i16jC
y
C 0Zy

k: (18)

This operator can be obtained by integrating out the vectorlike representations 160; 16
0
; 1000

and 10000, as shown in Fig. 3. This operator contributes only to D and L, and thus explains

why mu=mt � md=mb;me=m� . The U(1) � Z2 � Z2 charges of these additional vectorlike

representations can be read o� from Fig. 3, using the charges that have already been
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given. It is straightforward to show that these additional representations do not lead to any

destabilization of the gauge hierarchy.

An alternative possibility is the operator 16i16jT1P
y2, which can be obtained by intro-

ducing the �elds 160(�1

2

+�
) and 16

0
(1
2

++
). Again, the addition of these fermions does not

destabilize the gauge hierarchy. The subject of suitable higher-order diagrams for the van-

ishing �rst and second generation elements of the mass matrices in (8) - (10) and (12) is

under investigation, and the results will be reported elsewhere.

We have calculated the e�ect of the superheavy quarks and leptons on the running of

the gauge couplings. De�ning �3 � [�3(MG) � ~�G]=~�G, as in [17], we �nd that the quarks

and leptons contribute �0:004. Though this is in the right direction to improve the �t to

the data, it is too small to be signi�cant as the discrepancy is on the order of 2 or 3 % in

SUSY GUTs [17].

6 Summary

We have thus been able to show that it is possible to construct a realistic set of mass

matrices for the quarks and leptons which makes use of precisely the Higgs �elds necessary

to solve the doublet-triplet splitting problem in the SO(10) framework: one 45 adjoint Higgs

with its VEV pointing in the B�L direction; two pairs of 16+ 16 spinor Higgs, one of which

gets VEV's at the GUT scale while the 16 of the other develops an electroweak-breaking

VEV in the SU(5) 5 direction; and a pair of 10 vector Higgs, one of which develops a pair

of electroweak-breaking doublets. The 5 (16) and 5(10) mix with the mixing angle possibly

serving to achieve a small m0
b=m

0
t ratio without necessitating a large tan�. Just one pair of

vectorlike superheavy fermions in the 16+ 16 spinor and 10 + 10' vector representations

are required to generate masses for the second and third generations of quarks and leptons.
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Higher-order radiative corrections will give masses to the �rst generation fermions and are

under study.

An interesting consequence of the incorporation of the Georgi-Jarlskog factor of three in

the quark and charged lepton mass matrices is the prediction of sizable �� � �� mixing in

the neutrino sector without the imposition of a special texture for the right-handed Majo-

rana matrix. This has a direct bearing on the large � � � neutrino mixing observed with

atmospheric neutrinos and in future long-baseline experiments.
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Figure Captions:

Fig. 1: Diagrams that generate the entries in the quark and lepton mass matrices shown

in Eqs. (8) - (10). (a) The 33 elements denoted \E". (b) The 23 and 32 elements denoted

\G". Note that because of the VEV of A they are proportional to the SO(10) generator

B � L. (c) The asymmetric entries denoted \G" and \G0" arise from these diagrams. That

they do not contribute to the up quark masses, and contribute asymmetrically to the down

quark and lepton mass matrices, are consequences of the fact that the SO(10) 10's contain

5 but not 10 of SU(5).

Fig. 2: A diagram that could generate the \E" and \E 0" entries of the mass matrices in an

alternative version of the model. However, this version has an unstable gauge hierarchy. Thus

the diagram in Fig. 1(c) is necessary, implying that C 0 must break the weak interactions.

Fig. 3: A diagram that can generate small masses for the �rst generation quarks and

leptons.
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